Deep Data Analytics

Comprehensive Deep Data Analytics

Data, as “stuff,” are the starting point for all decisions. They are the basis for the information that decision-makers need. The information is buried inside the data and must be extracted. Extractions are easy for small data sets; means, standard errors, proportions, and simple charts suffice. Large data sets, so-called Big Data, present challenges best met with sophisticated tools and methodologies. This is deep data analytics — the tools and methodologies used for analyzing big data

Data Analytics Corp. uses a range of tools appropriate for crossing the analytical bridge to extract rich information from big data as well as small data.

This includes:
Businessman Making Presentation

Shallow Vs. Deep Analysis

Just as there is a continuum of information from poor to rich information, so there is a corresponding continuum for analysis from shallow to deep analysis. Shallow analysis consists of simple means and proportions as well as pie charts, bar charts, and (in the marketing research space) cross-tabs. These are usually just reported in a PowerPoint presentation. Deep analysis goes further and looks for relationships, trends, patterns, and anomalies. The goal with deep analysis is to look further into the data, to look beyond the obvious.

Information and Analysis Continuums

Information And Analysis Continuums

Shallow Analysis

Analytical Bridge

Deep Analysis

Deep data analysis is a complex process that is dynamic, not static. Dynamic means that you always:

  1. Link tables and graphs for drill-down
  2. Filter data to subset them based on other variables
  3. Drag & Drop variables onto and around a canvas, either tabular or graphic
  4. Build models, either causal (i.e., using a member of the regression family) or probabilistic
  5. Test hypotheses
  6. Profile or simulate to study effects

But All the Time Allowing You to Extract

… Rich Information

Business Analytics